
End-User Code Objects Page 1 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

Customizable and User-Defined Stored Procedures

1. The SQL content of LeasePak Databases

LeasePak databases contain, in addition to tables and indexes, a large
number of SQL objects, which generically we refer to as "Stored
Procedures" or "SQL Code". There are a number of different kinds of
SQL Code Objects, each characterized by a specific naming convention,
origin and purpose.

2. Kinds of SQL Code Objects

SQL Code Object
Type

Object Naming
Convention

File Naming
Convention

McCue Triggers mt_* <dbms>_mt_*.sql

McCue Procedures mp_* <dbms>_mp_*.sql

McCue Packages mpkg_* ora_mpkg_*.sql

Custom Procedures cp_* <dbms>_cp_*.sql

User Procedures up_* <dbms>_up_*.sql

User Packages upkg_* ora_upkg_*.sql

Note that Packages are a programming construct unique to Oracle and are
not available in Sybase databases.

3. Origins and Maintenance of SQL Code Objects

The SQL Code Objects designated as "McCue" are originated and
maintained exclusively by McCue Systems. Modification of any of these
code objects by the end user is strongly discouraged and may render a
site unsupportable. These objects are invoked by the LeasePak server
and the LeasePak client and should generally not be invoked by the end
user.

The SQL Code Objects designated as "Custom" are originated by McCue
Systems. Their interfaces are defined and maintained by McCue Systems.
Their functionality, as delivered to the end user, is intended to be a
reasonable implementation of the purposes for which the procedures are
intended, and does not require modification by the end user in order to
utilize LeasePak. However, they are also intended as entry points into
code that may be customized by the end user. Only their interfaces and
calling conventions are specified by McCue Systems.

The SQL Code Objects designated as "User" are originated and maintained
by the end user exclusively. The purpose of the "User" code objects is
to allow the end user free reign in implementing the custom
functionality of the "Custom" code objects. McCue Systems does not
specify or deliver any "User" code objects; code originated by and
delivered by McCue Systems will never reference "User" code objects.

End-User Code Objects Page 2 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

4. Calling sequences

The SQL Code Objects are arranged in a specific hierarchy. This
hierarchy controls which code objects can call other code objects.
Both Sybase and Oracle require that called code objects be already
defined in the logical database when they are first referenced by a
calling code object. This necessitates a specific sequence for loading
the code objects into a new or existing logical database.

Two mechanisms exist for determining this sequence. The first
mechanism applies to SQL code objects delivered by McCue Systems as
standard components. This mechanism applies to SQL code objects
designated as "McCue" (mt's, mpkg's and mp's) and as "Custom" (cp's).
This first mechanism operates by loading the four covered kinds of code
objects in a specific order (mpkg's first, then mp's, and then mt's and
finally, the cp's); within each kind of code object, the load order is
strictly ASCII sort order by filename.

The second mechanism applies to SQL code objects originated by the end
user; i.e., those designated as "User" code objects (upkg's and up's).
This second mechanism operates by loading the upkg's and up's in the
order specified by a file created and maintained by the end user; if
the file does not exist at the time of load, then it is created by
listing first the upkg's and then the up's, and then by ASCII sort
order by filename within each kind of code object.

In either case, whether the file is created by the end user or by the
system by default as described above, the file is used by the loader to
determine the sequence in which the individual files are to be loaded.
The "User" code object files may be listed in any order that suits the
needs of the site's customized code; if the end user lists the code
objects in an order that does not provide for predefinition of objects,
then the code load will fail.

In any case, the load order is first the "User" code objects, according
to the load sequence file, then the "McCue" code objects, and finally
the "Custom" code objects. This arrangement prevents either "User"
code objects or "McCue" code objects from calling "Custom" code
objects.

If the end user's implementation of the functionality of a "User" code
object requires that the "User" code object be able to call a "Custom"
code object, then the end-user will have to refactor the functionality
of the "Custom" code object into one or more "User" code objects and
utilize the load sequence file mechanism to insure that the "User" code
objects will be loaded in the desired order.

5. Content of SQL Code Object source files

It is required that each "Custom" or "User" source file declare exactly
one SQL code object. That is, each file named <dbms>_cp_*.sql,
<dbms>_upkg_*.sql or <dbms>_up_*.sql is allowed to define only one
Custom Procedure, User Package or User Procedure, respectively. It is
further required that each such code object defined by such files must
bear the exact same name as the file, after removing the filename's

End-User Code Objects Page 3 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

<dbms>_ prefix and the .sql file extension. In other words, a file
named "ora_cp_altlsesum.sql" may define only one object, and that
object must be named "cp_altlsesum". User Packages may define only one
package, but each package may contain multiple functions.

The primary reason for this convention is to allow the loader to
automatically, without user intervention or user code, perform the
necessary grant of privileges to the logical database role or group to
allow for the code object's execution.

The source files must also contain certain programming constructs
designed to allow the system to manage the creation and replacement of
code objects. The required constructs are given in Appendix A (Oracle)
and Appendix B (Sybase) of this document. Without these constructs,
the loading of SQL code objects will fail, if not on the first load,
then on a subsequent one.

6. The SQL Code Object loading process

The loading process of SQL code objects occurs under 4 circumstances.

Logical Database Create: The first circumstance is on initial creation
of a LeasePak logical database. During the creation process, performed
by the script db_create, the script db_load_code is invoked. This is
the script that implements the load order rules described above.
Db_load_code also creates the script for granting privileges to the
user code objects which is later executed by db_set_security, also
invoked by db_create.

Logical Database Upgrade: The second circumstance is on upgrade of a
LeasePak logical database to a new LeasePak release. During the
upgrade process, the database conversion driver, sgenlpux_conversion,
invokes the script db_drop_code, which enumerates and drops all code
objects within the logical LeasePak database being upgraded.
Subsequently, the conversion driver invokes db_load_code as described
under "Logical Database Create" above.

Installation of Maintenance Build: The third circumstance is on
installation of a Maintenance Build of LeasePak of the same release.
Maintenance Builds may require replacement of certain code objects, as
well as other modifications, in order for the logical LeasePak database
to remain compatible with the newly delivered server or client
components.

Development of Customized Code Objects: the fourth circumstance is
during the user's development cycle for customizing LeasePak SQL code
objects. When the end user is ready to test an iteration of his
development, the "User" and "Custom" code objects may be replaced in a
given database environment by invoking db_load_code and db_set_security
with special options that restrict their functionality to the end-
user's code.

End-User Code Objects Page 4 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

7. Location of McCue Systems-provided and End-User Code

All McCue provided SQL code is delivered in each LeasePak build in the
build's sql directory. Each supported DBMS has its own subdirectory
under sql, such as sql/ora and sql/syb.

LeasePak database environments, when first created, point
via symbolic links to a particular build. Typically this
build is the one designated as "live". The live build may
be replaced from time to time by the installation of
Maintenance Builds; environments constructed to point to
the live build will then point to whichever build is
currently designated as live. Within the environment,
there are various "directories" which are really symbolic
links to various components of the referenced build. In
particular, there is always a "sql" link that links to the
build's sql subdirectory for that environment's particular
DBMS. Therefore, a Sybase environment's sql link points to
the build's sql/syb directory, and an Oracle environment's
sql link points to the build's sql/ora directory.

Regardless of the DBMS used by an environment's logical LeasePak
database, the link is named "sql" and may always be referred to by the
shell environment variable "$usql" from processes configured to point
to that environment.

Upon installation of LeasePak version 60a, the installing user is asked
to provide a Custom Code Directory. By default, this is /opt/msi/cst,
though the user may locate this directory anywhere outside of the
LeasePak release directory ($TOPDIR). This directory must already
exist at installation time and must be writable by the MSIADMIN user.
The location of this directory is stored in the environment variable
"$CSTDIR".

Upon installation of each build, either through the initial
installation or subsequent maintenance builds, will, upon being linked
as the "live" build, be "brought online;" i.e., will be installed in
the system in a fully usable way. This process is new to v60a, and is
centered around the concept of user-customizable code. When the build
is onlined, a subdirectory in $CSTDIR is created using the build's
build sequence (e.g., $CSTDIR/6.00.1234) and a symbolic link in the
build directory is created pointing to this directory. This link is
named "cst". Therefore, every build will have a link "cst" pointing to
the directory $CSTDIR/<buildseq>. Also at this time, further
subdirectories in $CSTDIR/<buildseq> are created, "cql" and "prg"; cql
will have a subdirectory for each installed DBMS in the release:
"cql/syb and/or cql/ora". These directories are owned by $MSIADMIN and
have 750 permissions.

It is into the cql subdirectories that the end-user must place all
customized "custom" SQL code objects and all "user" SQL code objects.
The load order file described above is also located here, and must be
named "<dbms>_load_seq.txt". All files located in the cql
subdirectories must be named using the above described naming
conventions, and must be owned by ${MSIADMIN}:${MSIGROUP}, with 440 (-
r--r-----) permissions.

End-User Code Objects Page 5 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

The user should never customize the <dbms>_cp_*.sql files found in the
build's sql subdirectories. Instead, the end user should make copies
of these delivered "custom" SQL code object files in the appropriate
cql subdirectory and perform their customizations there.

When a database environment is created or upgraded, an environment
subdirectory (really a symbolic link) named "cql" will be created,
pointing to the appropriate DBMS subdirectory within the
$CSTDIR/<buildseq>/cql directory. This link may be referred to using
the shell environment variable "$ucql" from any process configured to
point to that database environment. Through a special option to the
setup_new_env script, a database environment's $ucql may be made to
point to $usql, effectively preventing any code object customizations
from affecting the logical LeasePak database referenced by that
particular database environment.

Likewise, each database environment will have another link named "prg",
pointing to the $CSTDIR/<buildseq>/prg directory. This directory is
intended for user customizable and user-provided programs and scripts
which LeasePak will deliver or specify from time to time.

When db_load_code runs, it will gather lists of the file names for each
of the defined SQL code object types. Using the list of
<dbms>_cp_*.sql filenames, obtained exclusively from the McCue-
delivered $usql directory, the loader will check for an instance of
each such file in the $ucql directory. If the loader finds such a file
in the $ucql directory, then it will replace the pathname in the list
with the pathname of the $ucql version, allowing the end-user's
customized code to override the standard McCue-delivered versions of
the same code objects.

If $ucql is empty, no end-user code will be loaded into the database.

To summarize:

SQL Code Object
Type

File Naming
Convention

Default
Location

Custom code
Location

User-defined package ora_upkg_*.sql n/a $ucql

User-defined
procedure <dbms>_up_*.sql n/a $ucql

Load sequence file <dbms>_load_seq.txt n/a $ucql

McCue procedure <dbms>_mp_*.sql $usql n/a

McCue package ora_mpkg_*.sql $usql n/a

McCue trigger <dbms>_mt_*.sql $usql n/a

Custom procedure <dbms>_cp_*.sql $usql $ucql

End-User Code Objects Page 6 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

8. Process of customizing SQL Code Objects

The following outlines the steps the end-user must perform in order to
implement customized SQL code objects:

a. On initial installation of build (including initial installation of
a LeasePak release):

(1) Determine which Custom Code Objects are to be customized;

(2) Copy those code object files to the appropriate cql dbms
subdirectory within $CSTDIR;

(3) Perform desired customizations, including creation of User
Code Objects, and a load sequence file if necessary;

(4) Unit test the customized code by:

(a) Dropping the existing end-user code objects from the
targeted logical LeasePak database using db_drop_code (see
Appendix C),

(b) Loading the customized code into the targeted logical
LeasePak database using db_load_code (see Appendix C),

(c) Granting necessary privileges to the database users of
the targeted logical LeasePak database using
db_set_security (see Appendix C).

(5) Execute the pertinent LeasePak functionality within the
targeted logical LeasePak database.

b. Once the code has been customized, new logical LeasePak databases
may be built, or existing LeasePak database environments in prior
releases may be upgraded, or existing LeasePak database environments in
the current release may be updated as described above.

c. On installation of a new build into an existing LeasePak release:

(1) Determine if there have been any changes made to the
interfaces (i.e., parameter lists or contents of returned result
sets) or functionality or implementation details of any of the
"Custom" procedures that the end-user previously has customized;

(2) Alter the customized copies of such code objects as have
changed so that they are compatible with the new build;

(3) Unit test the customized code by loading the current version
of the Custom and User code objects using db_load_code and then
executing the pertinent LeasePak functionality.

End-User Code Objects Page 7 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

Appendix A - Oracle package header

The following are the required programming constructs for an Oracle
package file:

Whenever Sqlerror Exit Failure Rollback
Whenever Oserror Exit Failure Rollback

CREATE OR REPLACE PACKAGE upkg_<package-name>
AS
 <procedure and function prototypes>
END upkg_<package-name>;

CREATE OR REPLACE PACKAGE BODY upkg_<package-name>
AS
 <procedure and function definitions>
END upkg_<package-name>;
\
Exit

and for an Oracle procedure file:

Whenever Sqlerror Exit Failure Rollback
Whenever Oserror Exit Failure Rollback

CREATE OR REPLACE PROCEDURE cp_<procedure-name>
 <procedure definiton>
END cp_<procedure-name>;
\
Exit

Appendix B - Sybase procedure header

The following are the required programming constructs for a Sybase
procedure file:

:r LeasePak_syb_use
go
if exists
(select * from sysobjects where name = 'up_<procedure-name>')
 drop procedure up_<procedure-name>
go
create procedure up_<procedure-name>
 <body of procedure>
go

End-User Code Objects Page 8 of 8 01/04/2007
© 2006 McCue Systems, Inc. end_user_code_objects.doc All rights Reserved

Appendix C - new flags added to existing scripts

(1) setup_new_env

[test60a:/home/test60a] setup_new_env
ERROR: Arguments required:
 Usage: setup_new_env [-[dblncfts]] env-name db-type [db-server db-name] [build-
 descriptor]
 Usage: setup_new_env -v[dbln] env-name host-env build-descriptor
 where:
 -v = Visitor environment -t = Test driver environment [require build-
 descriptors]
 -n = No client info display -f = Foreign (non-LeasePak) database
 -c = Closed to visitor -l = Links used to populate exe dir
 -b = Build-id used for live/dlvy -d = Dev startup files used
 -s = No end-user code
 A build descriptor is 'live', 'dlvy', 'host', or a build name ('bld#.##.####',
 e.g., 'bld5.01.1126')

The new -s flag will prevent any end-user code ("User" code objects or
customized "Custom" code objects) from being loaded into logical
LeasePak database.

(2) db_drop_code

[dba60a:/home/dba60a] db_drop_code
ERROR: Usage: db_drop_code [-u] environment-name [dbo-password]

The new -u flag will cause db_drop_code to drop only end-user code
("User" code objects or customized "Custom" code objects) from the
logical LeasePak database indicated. In the absence of the –u flag,
db_drop_code will drop all end-user and McCue-provided code including
views from the logical LeasePak database indicated.

Note that, starting in v53a, db_drop_code also affects views within the
logical LeasePak database.

(3) db_load_code

[dba60a:/home/dba60a] db_load_code
ERROR: Usage: db_load_code [-u] environment-name [dbo-password]

The new -u flag will cause db_load_code to load only end-user code
("User" code objects or customized "Custom" code objects) into the
logical LeasePak database indicated. In the absence of the –u flag,
db_load_code will load all end-user and McCue-provided code objects
including LeasePak views into the logical LeasePak database indicated.

Note that, starting in v60a, db_load_code also affects views within the
logical LeasePak database.

(4) db_set_security

[dba60a:/home/dba60a] db_set_security
ERROR: Usage: db_set_security [-u] environment-name [dbo-password]

The new -u flag will cause db_set_security to execute only the script
created by db_load_code when it last loaded end-user code ("User" code
objects or customized "Custom" code objects) into the logical LeasePak
database indicated.

